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General Minkowski vacuum state is seen to be equivalent to a thermal bath for a Rindler
uniformly accelerated observer. This paper calculates the generalized uncertainty rela-
tion of one-dimensional Rindler oscillator in the coordinate representation. The calcu-
lations show that for a Rindler uniformly accelerated observer there is not only general
quantum fluctuation but also thermal fluctuation related to his acceleration.

1. INTRODUCTION

As is well known, an observer at rest in Rindler space is equivalent to a
uniformly accelerating observer in Minkowski space, and, in particular, a pure
vacuum state of Minkowski representation is a mixed state of finite temperature
of Rindler representation (Richard, 1985; Unruh, 1976). In Minkowski vacuum,
for a Minkowski observer, coordinates and momentum satisfy general uncertainty
relation, whereas for a Rindler observer, for whom Minkowski vacuum may look
as a thermal bath (Zhao zheng, 1999), we need to find out what uncertainty relation
do its position and momentum satisfy?

With the use of thermal field dynamics (TFD), Mann and his colleagues (Mann
et al., 1989; Umezawa and Yamanaka, 1988) present generalized uncertainty re-
lation at first, which is the relation between quantum and thermal fluctuation, and
they also give the formal expression of generalized uncertainty relation. Besides,
the coordinate representation is usual and important in quantum mechanics. We
find that this representation also can be exploited in calculations about thermal
nonclassical states, such as coherent state. Minkowski vacuum state can be looked
as a coherent state of Bogoliubov-Bardeen-Cooper-Schrieffer type (Shin, 1986) for
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a Rindler observer. In this paper, TFD is introduced into Rindler theory, and gener-
alized uncertainty relation of one-dimensional Rindler oscillator in the coordinate
representation is discussed.

2. RINDLER AND MINKOWSKI SPACE–TIME

As we know, the coordinates in Rindler space–time can be obtained from
the coordinates in Minkowski space–time under the following coordinates
transformation

T = a−1eaξ sinhaη

X = a−1eaξ coshaη for region R (1)

and

T = −a−1eaξ̃ sinhaη̃

X = −a−1eaξ̃ coshaη̃ for region L (2)

Rindler coordinates (η, ξ ) and (η̃, ξ̃ ) cover space–time region R and L. Region
R or L is a quadrant of Minkowski space–time, respectively, as shown in Fig. 1.
The region L is called the mirror space–time region of R. With the method of
standard Rindler quantization (Birrell and Davies, 1982), we can obtain two groups
of annihilation and creation operators (b, b†) and (̃b, b̃†) corresponding to the
Rindler modes in the regions R and L, respectively. The vacuum state defined
by these two groups of annihilation and creation operators is|0〉R in region R

Fig. 1. Rindler coordinatization of Minkowski space.



P1: VENDOR/LMD/GAY P2: GCQ/GCO/FOM/FTK/GCZ/FNV QC: GCQ

International Journal of Theoretical Physics [ijtp] PP131-301584 May 14, 2001 18:32 Style file version Nov. 19th, 1999

Generalized Uncertainty Relation of One-Dimensional Rindler Oscillator 1343

and|0̃〉R in region L, respectively. The modes that are corresponding to these two
groups of annihilation and creation operators are complete in the regions R and L,
respectively, but they are not complete in the whole Mikowski space–time region.
In region R, position is denoted byξ and momentum bypR, while in region L,
position is denoted bỹξ and momentum bỹpR.

The Minkowski vacuum is defined by general annihilation and creation op-
erators (a, a†). Position isX and momentum isP in Minkowski space–time. For
the difference of modes selected, we have two other groups of annihilation and
creation operators (d, d†) and (d̃, d̃ †). The relation ofd, d̃ and Rindler annihilation
operators satisfy the Bogoliubov transformation

d ≡ T(θ ) bT†(θ )

d̃ ≡ T(θ ) b̃T†(θ ) (3)

where [d, d†] = [d̃, d̃
†
] = 1. The unitary transformation (called thermal transfor-

mation) is

T(θ ) = exp{−θ (β) (bb̃− b†b̃†)} (4)

where

tanh [θ (β)] = exp

(
−βhω

2

)
(5)

β = 1
KBT , with KB the Boltzmann constant andT the temperature. The vacuum

state defined by (d, d†) and (d̃, d̃ †) is equivalent to the Minkowski vacuum state
|0〉M, and there are relations as follows

d |0〉M = d̃ |0〉M = 0 (6)

For one-dimensional Rindler oscillator, we construct position and momentum
(x, p) from (d, d†) and their tilde conjugate quantities (x̃, p̃) from (d̃, d̃ †) as
follows:

x =
√

h

2mω
(d + d†)

p = −i

√
mωh

2
(d − d†) (7)

and

x̃ =
√

h

2mω
(d̃ + d̃

†
)

p̃ = −i

√
mωh

2
(d̃ − d̃

†
) (8)
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The relation between Rindler and Minkowski vacuum is

|0〉M = T(θ ) |0, 0̃〉R (9)

where|0, 0̃〉R is a direct product of the Rindler vacuum state in region R and L, and
T(θ ) describes the effect of a thermal bath in which a quantum harmonic oscillator
immerse. From Eq. (9), we can say that a thermalizing operator heats the ground
state of a zero-temperature harmonic oscillator (Rindler vacuum) into a thermal
state with a finite temperature for a Rindler uniformly accelerating observer. Note
that any operator in region R commutes with any tilde operator in region L for
bosons in this paper. Consequently Minkowski vacuum expectation values for
the Rindler observable quantity coincide with its canonical ensemble average in
statistical mechanics.

3. GENERALIZED UNCERTAINTY RELATION OF
ONE-DIMENSIONAL RINDLER OSCILLATOR

For the quantum one-dimensional oscillator in Rindler space–time region R,
its Hamiltonian is

H = 1

2m
p2

R+
1

2
mω2ξ2 =

(
b†b+ 1

2

)
hω (10)

The wave function of ground state in the coordinate representation is

〈ξ | 0〉R =
(

mω

πh

)1/4

exp

{
−mω

2h
ξ2

}
(11)

wherepR = −i h d
dξ ≡ −i h∂ξ , m is the mass, andω is the angular frequency. And

b = 1√
2mhω

(i pR+mωξ )

b† = 1√
2mhω

(−i pR+mωξ ) (12)

are the corresponding annihilation and creation operators, respectively. Using the
tilde rules in TFD, we introduce the corresponding tilde quantity in space–time
region L

H̃ = 1

2m
p̃2

R+
1

2
mω2ξ̃2 =

(
b̃†b̃+ 1

2

)
hω (13)

Since the tilde conjugate of a c-number is its complex conjugate and the
expectation values of Hermitian operators are real, we obtain

〈ξ〉 = 〈ξ̃〉, 〈ξ2〉 = 〈ξ̃2〉, etc (14)
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According to the invariance of Bogoliubov transformation, we have the iden-
tical equation as follows

〈(1p)2〉〈(1x)2〉 − 〈1p1 p̃〉〈1x1x̃〉
= 〈(1pR)2〉〈(1ξ )2〉 − 〈1pR1 p̃R〉〈1ξ1ξ̃〉 (15)

where

〈A〉 = M〈0|A|0〉M (16)

A is any operator, and (1A)2 is the variance ofA. 〈(1A)2〉 = 〈A2〉 − 〈A2〉 is
the fluctuation ofA. We shall discuss Eq. (15) in the coordinate representation for
one-dimensional oscillator.

Substituting Eq. (12) into Eq. (4), one has

T(θ ) = exp

{
i
θ

h
(ξ p̃R− ξ̃ pR)

}
(17)

with θ ≡ θ (β). From Appendix B.4 in Kirzhnits (1967), Eq. (17) can be written as

T(θ ) = exp{−tanh (θ ) ξ̃ ∂ξ } exp{ln [cosh (θ )](ξ∂ξ − ξ̃ ∂ξ̃ )}
× exp{−tanh (θ ) ξ∂ξ̃ } (18)

Using the following operator properties

eC∂y f (y) = f (y+ C) (19)

and

ecy∂y f (y) = f (yeC) (20)

one can give the wave function of Minkowski vacuum in Rindler coordinate rep-
resentation

〈ξ̃ , ξ | 0〉M = T(θ )

(
mω

πh

)1/2

exp

{
−mω

2h
(ξ2+ ξ̃2)

}

=
(

mω

πh

)1/2

exp

{
−mω

2h

[
(ξ cosh (θ )− ξ̃ sinh (θ ))

2

+ (ξ̃ cosh (θ )− ξ sinh (θ ))
2

]}
(21)

Whenβ →∞, from Eqs. (4) and (5)θ (β)→ 0, T(θ )→ 1, so〈ξ̃ , ξ | 0〉M is
reduced to〈ξ̃ , ξ | 0, 0̃〉R.

By a Bogoliubov transformation, we can get a simple formula of Eq. (21):

〈ξ̃ , ξ | 0〉M =
(

mω

πh

)1/2

exp

{
−mω

2h
(x2+ x̃2)

}
(22)
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where

x ≡ T(θ )ξT†(θ )

x̃ ≡ T(θ )ξ̃T†(θ ) (23)

Next, we shall calculate the fluctuation of one-dimensional Rindler oscillator
in the coordinate representation in the thermal equilibrium. Now first we calculate
the Rindler position probability density in Minkowski vacuum.

ρξ ′ ξ̃ ′ξ ξ̃

= M〈0 | ξ ′, ξ̃ ′〉〈ξ̃ , ξ | 0〉M

= mω

πh
exp

−mω

2h

ξ
′2(sinh2(θ )+ cosh2(θ ))− 4ξ ′ξ̃ ′ sinh(θ ) cosh(θ )

+ ξ̃ ′2(sinh2(θ )+ cosh2(θ ))+ξ2(sinh2(θ )+ cosh2(θ ))

− 4ξ ξ̃ sinh(θ ) cosh(θ )+ ξ̃2(sinh2(θ )+ cosh2(θ ))




(24)

Takingξ = ξ ′ andξ̃ = ξ̃ ′ in Eq. (24), we obtain

ρξξ̃ξ ξ̃ =
mω

πh
exp

{
−mω

h

[
ξ2(sinh2(θ )+ cosh2(θ ))− 4ξ ξ̃ sinh(θ ) cosh(θ )

+ ξ̃2(sinh2(θ )+ cosh2(θ ))

]}
(25)

This is a Gaussian probability density, and from it one can easily get

〈1ξ1ξ̃〉 =
∫ +∞
−∞

ξ ξ̃ρξξ̃ξ ξ̃ dξ dξ̃ = h

mω
sinh(θ ) cosh(θ ) (26)

Similar to the position, we can get some corresponding results for momentum

ρpR, p̃R, pR, p̃R =
∫ +∞
−∞

1

2πh
exp

{
i

pRξ
′

h
− i

pRξ

h
+ i

p̃Rξ̃
′

h
− i

p̃Rξ̃

h

}
× ρξ ′ ξ̃ ′ξ ξ̃ dξ dξ ′ dξ̃ dξ̃ ′

= c
π2

a2− 1
4b2

exp

{
− 1

2h2

ap2
R+ bpR p̃R+ ap̃2

R

a2− 1
4b2

}
(27)

where

a = mω

2h
[sinh2(θ )+ cosh2(θ )]

b = 2mω

h
sinh(θ ) cosh(θ )

c = mω

4π3h3 (28)
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Hence

〈1pR1 p̃R〉 =
∫ +∞
−∞

pR p̃RρpR, p̃R, pR, p̃RdpR d p̃R = hωmsinh (θ ) cosh (θ ) (29)

so we can obtain the second term on the right hand side of Eq. (15)

〈1ξ1ξ̃〉〈1pR1 p̃R〉 = h2 sinh2(θ ) cosh2(θ ) = h2

4 sinh2
(
βω h

2

) (30)

Noting

〈1p1 p̃〉 = 〈1p〉〈1 p̃〉 = 0

〈1x1x̃〉 = 〈1x〉〈1x̃〉 = 0 (31)

Equation (15) can be turned into

〈(1pR)2〉〈(1ξ )2〉 = 〈(1p)2〉〈(1x)2〉 + 〈1pR1 p̃R〉〈1ξ1ξ̃〉 (32)

Thus, we have the Generalized Uncertainty Relation of one-dimensional
Rindler oscillator in the coordinate representation in Minkowski vacuum

〈(1pR)2〉〈(1ξ )2〉 ≥ h2

4
+ h2

4 sinh2
(
βω h

2

) (33)

4. SUMMARY AND DISCUSSION

The key result of this paper is Eq. (33), which describes the relation of quantum
fluctuation, thermal fluctuation, and total fluctuations of one-dimensional Rindler
oscillator in the coordinate representation and separates thermal fluctuation from
quantum ones intuitionisticly. For a Rindler uniformly accelerated observer, the
term on the left hand side of Eq. (33) describes total fluctuations of one-dimensional
Rindler oscillator. The first term on the right hand side of Eq. (33)〈(1p)2〉〈(1x)2〉
describes zero-temperature fluctuation, which is purely a quantum fluctuation and
satisfies the general uncertainty relation.

For a Rindler uniformly accelerated observer, the second term on the right
hand side of Eq. (33) describes the purely thermal fluctuation of one-dimensional
Rindler oscillator, which is determined by cross terms of tilde and nontilde oper-
ators. WhenT → 0,β →∞, the thermal fluctuation〈1pR1 p̃R〉〈1ξ1ξ̃〉 → 0.
It describes that the thermal fluctuation approaches 0 at zero-temperature. This
phenomenon can be theoretically interpreted: from the Rindler effect Minkowski
vacuum can be seen as a thermal bath for an uniformly accelerated observer
and temperature is proportional to his acceleration. WhenT → 0, the accel-
eration of the Rindler uniformly accelerated observera→ 0. In this case, the
Rindler uniformly accelerated observer is just the general Minkowski inertial
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observer. At this time total fluctuations reduce to quantum fluctuation, and are
proportional toh.

In addition, Rindler radiation is a kind of purely quantum effect. Whenh→ 0,
quantum effect is not considered, and Rindler effect will not exist. While discussing
the fluctuation of one-dimensional Rindler oscillator, we find that whenh→ 0,
thermal fluctuation of one-dimensional Rindler oscillator still exists, and it is not
related toh.

〈1pR1 p̃R〉〈1ξ1ξ̃〉 → 1

β2ω2
= k2T2

ω2
(34)

This describes that thermal fluctuation of one-dimensional Rindler oscillator
is proportional toT2 and inverse toω2 without considering quantum effect.
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